GNU C++ Debugger GDB

Pei-Luan Tai

Outline

1. Introduction

2. basic commands: run, quit, break, list, next/step, help
3. examine tool: print, examine, info, watch

4. interactive demol and demo2.

5. gdb script

Essential debugging technique:
print out the info and then
check whether it matches your expectation.

But... It could mess up your source code, especially for complex bugs
You might:

" to set some variables to specific values for experimenting.
= to disable/enable certain “if statements” for experimenting.

GDB helped me debug a strange behavior of dose
engine; the program was halted at certain steps
randomly after around 20,000 steps with previous
nuclear physics implementation and my new

implementation for the MCS process.

For simpler bugs (no more than a few hours to solve),
| mostly use print commands.

To use GDB, the first thing is to add —g or -ggdb
option for the g++ compiler.

Then;
$ gdb your exec

You will see the welcome screen as the following:

GNU gdb (Ubuntu 7.7.1-Oubuntu5~14.04.3) 7.7.1

Copyright (C) 2014 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "1686-1linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/qdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from codel...done.

/’__5\\
(##(gdb) |)
N 7

__—/

The prompt can be customized in ~/.gdbinit file.

To quit GDB: type in quit or g, or cfrl+d.

Basic commands: run or r

(gdb) run arg? arg2 arg3 ...
(gdb) r arg! arg2 arg3 ...

If you want to automatically set the arguments every time you
run the executable:

Use "set args" command.
(gdb) set args argl arg2 arg3 ..

If there are breakpoints, the program will be halted at the
first encountered breakpoint.

Basic commands: break or b (1)

break 10 (set a breakpoint at line 10)
break xyz.cpp:10 (set a breakpoint at xyz.cpp line 10)

break my func (whenever my_func is invoked, break there)
break xyz.cpp:my_ func

Suppose we have a function: func(intx, inty)

and we only want to check what happen when x==1.
we can do the following:

(gdb) break func if x ==

Basic commands: break or b (2)

oa_n

Using “continue” or “c” command allows us to go directly to
next break point.

DISABLE OR DELETE BREAKPOINTS
disable n1 n2 n3 ... (disable breakpoint n1 n2 n3...)
delete n1n2 n3 ...(delete breakpointnl n2n3...)
info break can show the break info

Basic commands: list or |

list command can print the source code:

list

list 10 <==center atline 10

list 1,50 <==show line 1to line 50
list function_name

list file:function _name

where <== show you where you are at
info line <==show you the current line

int num;

do{

printf("Enter a positive integer:

std::cin >> num;

} while (num < 0);

10

");

Basic commands: next/step or n/s

int main() {
int x1 = func1(10).
int x2 = func2(20);
int x3 = func3(30);
}

"next" commands will not go into a subroutine.
"step" will let us go into funci(), func2(), and func3().

One also can do multiple “next”
next [N],

e.g. next 3 <==next three subroutines.

11

examining tool: print or p

print my_var

print &my var <== memory address
print sizeof(my_var)

You use print command to set the value as well:
print my var=10 <==let my variable = 10

12

examining tool: x

“x/Format” can provide low level information.

char my_str[50] = "123";
(gdb) x my_str
Oxbfffee08: 0x31

It prints out the first byte (1 char =1 byte), 0x31 ="'1"

"Oxbfffee08" is the memory address of my_str variable.

(gdb) x/6b my_str

Oxbfffee08: 0x31 0x32 0x33 0x00
It prints out first 6 bytes for the my_str.

0x00

0x00

examining tool: watch

"watch" command sets a watchpoint for an expression.
int main(int argc, char** argv) {

int x =0;

x = func1(10);

x = func2(20);

x = func3(30);
}

For example, we want to check what the value of x whenever it changes.
then, type in "watch x"

it is kind of break, and so we use "continue" command,

when the value of variable x changes, gdb will stop the process,

then print out the old and new value.

examining tool: info

info locals (information for local variables)
info breakpoints

info args

info watch

examining tool: backtrace or bt

"backtrace" command allows us to trace back to understand
which are the previous functions to call the current function.

16

Interactive demo 1: factorial

Interactive demo 2: LinkedList

gdb script example:

in your sh file:
gdb --command=gdb_script \
--args SbinPath/src/dose_engine -algorithm 0\
-history_num S{particle_number} \
-energy_mean ${incident_energy} \

in your gdb_script file:
break ..MonteCarlo CPU_MT.cpp:540
run

lopping

set $ipx=0

while ($ipx < 395)
print line
continue
set $ipx=$ipx+1

end

18

